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Abstract

Some deterministic and random coincidence theorems for f -nonexpansive maps are obtained. As appli-
cations, invariant approximation theorems are derived. Our results unify, extend and complement various
known results existing in the literature.
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1. Introduction and preliminaries

Let M be a subset of a normed space X. We denote by CD(M), CB(M), and K(M) the
families of all nonempty closed, nonempty closed bounded, and nonempty compact subsets of M ,
respectively. The Hausdorff metric induced by d on CD(M) is given by

H(A,B) = max
{

sup
a∈A

dist(a,B), sup
b∈B

dist(b,A)
}

for A,B ∈ CD(M), where dist(a,B) = infb∈B d(a, b). The set PM(u) = {x ∈ M: d(x,u) =
dist(u,M)} is called the set of best approximants to u ∈ X out of M . Let f :M → M . A mapping
T :M → CD(M) is called f -Lipschitz if there exists k � 0 such that H(T x,T y) � k‖f x −fy‖
for any x, y ∈ M . If 0 � k < 1 (respectively k = 1), then T is called an f -contraction (respec-
tively f -nonexpansive map). A point x ∈ M is called a coincidence point (respectively common
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fixed point) of f and T if f x ∈ T x (respectively x = f x ∈ T x). The set of coincidence points
of f and T is denoted by C(f,T ). The set of fixed points of T (respectively f ) is represented
by F(T ) (respectively F(f )). The pair {f,T } is called (1) commuting if Tf x = f T x for all
x ∈ M and (2) weakly compatible [5] if f and T commute at their coincidence points. The
mapping f is called T -weakly commuting [8] if for all x ∈ M , ff x ∈ Tf x. If the pair {f,T }
is weakly compatible, then f is T -weakly commuting at the coincidence points. However, the
converse is not true in general. If T is single-valued, then T -weak commutativity at the coinci-
dence points is equivalent to the weak compatibility (see [8]). The mappings f and T are said to
satisfy property (E.A) [8] if there exist a sequence {xn} in X, some a ∈ X and A ∈ CD(X) such
that limn→∞ f xn = a ∈ A = limn→∞ T xn. The set M is called q-starshaped with q ∈ M if the
segment [q, x] = {(1 − k)q + kx: 0 � k � 1} is contained in M for all x ∈ M .

A Banach space X satisfies Opial’s condition if for every sequence {xn} in X weakly conver-
gent to x ∈ X, the inequality

lim inf
n→∞ ‖xn − x‖ < lim inf

n→∞ ‖xn − y‖
holds for all y �= x. The map T :M → CD(X) is said to be demiclosed at 0 if for every sequence
{xn} in M and {yn} in X with yn ∈ T xn such that {xn} converging weakly to x and {yn} converges
to 0 ∈ X, then 0 ∈ T x. A mapping T :M → CD(X) is said to satisfy condition (A) [14] if for any
sequence {xn} in M , D ∈ CD(M) such that dist(xn,D) → 0 and dist(xn, T xn) → 0 as n → ∞,
then there exists y ∈ D with y ∈ Ty. Let f : M → X be a mapping. Then f and T are said to
satisfy condition (A0) [13] if for any sequence {xn} in M , D ∈ CD(M) such that dist(xn,D) → 0
and dist(f xn,T xn) → 0 as n → ∞, there exists y ∈ D with fy ∈ Ty.

Let (Ω,Σ) be a measurable space. A mapping T :Ω → CB(M) is called measurable if for
any open subset C of M ,

T −1(C) = {
ω ∈ Ω: T (ω) ∩ C �= ∅} ∈ Σ.

A mapping ξ :Ω → M is said to be a measurable selector of a measurable mapping T :Ω →
CB(M) if ξ is measurable and for any ω ∈ Ω , ξ(ω) ∈ T (ω). A mapping T :Ω × M → CB(M)

(respectively f :Ω ×M → M) is called a random operator if for any x ∈ M , T (., x) (respectively
f (., x)) is measurable. A measurable mapping ξ :Ω → M is called a random fixed point of a
random operator T :Ω × M → CB(M) (respectively f :Ω × M → M) if for every ω ∈ Ω ,
ξ(ω) ∈ T (ω, ξ(ω)) (respectively f (ω, ξ(ω)) = ξ(ω)). A measurable mapping ξ :Ω → M is a
random coincidence point of random operators T :Ω ×M → CB(M) and f :Ω ×M → M if for
every ω ∈ Ω , f (ω, ξ(ω)) ∈ T (ω, ξ(ω)). A random operator T :Ω × M → CB(M) (respectively
f :Ω × M → M) is said to be continuous (weakly continuous, nonexpansive etc.) if for each
ω ∈ Ω , T (ω, .) (respectively f (ω, .)) is continuous (weakly continuous, nonexpansive, etc.).

Latif and Tweddle [11] established some coincidence point theorems for f -nonexpansive
mappings using the commutativity condition of maps. Afterwards, Shahzad and Latif [15] ob-
tained random versions of their results. Recently, Shahzad [13] proved some general random
coincidence point theorems and, as applications, derived a number of random fixed point results.
In this paper, we obtain some coincidence point results. We note that the assumption of commu-
tativity of maps in Latif and Tweddle’s theorems and their random analogues are superfluous. We
further add that we do not require f and T to be continuous in our main deterministic results. We
apply our results to prove some fixed point theorems for a more general class of noncommuting
maps. As applications, invariant approximation results are derived. Finally, we obtain random
versions of our results using a general random coincidence point result due to Shahzad [13]. Our
results unify, extend and complement many known results existing in the literature including
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those of Beg and Shahzad [1–3], Dotson [4], Jungck and Sessa [6], Jungck [7], Kamran [8], Latif
and Bano [10], Latif and Tweddle [11], Shahzad [13], Shahzad and Latif [15], Tan and Yaun [17]
and Xu [18].

The following results will be needed.

Theorem 1.1. [16] Let (X,d) be a metric space, f :X → X and T :X → CD(X) such that
T (X) ⊂ f (X). If f (X) is complete and T is an f -contraction, then C(f,T ) �= ∅.

Lemma 1.2. [11] Let M be a nonempty weakly compact subset of a Banach space X satisfying
Opial’s condition. Let f :M → M be a weakly continuous mapping and T :M → K(M) an
f -nonexpansive map. Then (f − T ) is demiclosed.

Theorem 1.3. [13] Let M be a nonempty separable weakly compact subset of a Banach space
X and f :Ω × M → M a random operator which is both continuous and weakly continuous.
Assume that T :Ω × M → CB(M) is a continuous random operator such that (f − T )(ω, .) is
demiclosed at 0 for each ω ∈ Ω . If f and T have a deterministic coincidence point, then f and
T have a random coincidence point.

Theorem 1.4. [13] Let M be a nonempty separable complete subset of a metric space X, and
f :Ω × M → M and T :Ω × M → CD(M) continuous random operators satisfying condi-
tion (A0). If f and T have a deterministic coincidence point, then f and T have a random
coincidence point.

2. Coincidence point results

We begin with the following result, which extends and improves Theorem 2.1 of Latif and
Tweddle [11].

Theorem 2.1. Let M be a nonempty complete and q-starshaped subset of a normed space X and
f :M → M a map such that f (M) = M . Assume that T :M → CD(M) is an f -nonexpansive
map. If T (M) is bounded and (f − T )(M) is closed, then C(f,T ) �= ∅.

Proof. Choose a sequence {kn} with 0 < kn < 1 such that kn → 1 as n → ∞. For each n, define
Tn by

Tnx = (1 − kn)q + knT x

for all x ∈ M . Then, for each n, Tn : M → CD(M), Tn(M) ⊂ M = f (M), and

H(Tnx,Tny) = knH(T x,T y) � kn‖f x − fy‖
for each x, y ∈ M . Since f (M) is complete, by Theorem 1.1, for each n, there exists xn ∈ M

such that f xn ∈ Tnxn. This implies that f xn − yn = (1 − kn)(q − yn) for some yn ∈ T xn. Since
T (M) is bounded and kn → 1 as n → ∞, it follows that f xn − yn → 0 as n → ∞. Since
(f − T )(M) is closed, it follows that 0 ∈ (f − T )(M) and so f x0 ∈ T x0 for some x0 ∈ M .
Hence C(f,T ) �= ∅. �

The following result generalizes and improves Theorem 2.2 of Latif and Tweddle [11], Theo-
rem 3.2 of Lami Dozo [9], and Corollary 3.4 of Jungck [7].
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Theorem 2.2. Let M be a nonempty weakly compact and q-starshaped subset of a Banach space
X and f :M → M be a map such that f (M) = M . Assume that T :M → CD(M) is an f -non-
expansive map and that one of the following two conditions is satisfied:

(a) (f − T ) is demiclosed at 0;
(b) f is weakly continuous, T is compact-valued and X satisfies Opial’s condition.

Then C(f,T ) �= ∅.

Proof. As in the proof of Theorem 2.1, f xn − yn → 0 as n → ∞ where yn ∈ T xn. By the weak
compactness of M , there is a subsequence {xm} of the sequence {xn} such that {xm} converges
weakly to y ∈ M as m → ∞.

(a) Since (f − T ) is demiclosed at 0, we have 0 ∈ (f − T )y. Thus C(f,T ) �= ∅.
(b) By Lemma 1.2, (f − T ) is demiclosed at 0. Hence the result follows from (a). �

Example 2.3. Let X = R with the usual norm and M = [0,1]. Define

T x = [
0, x2] and f x = 1 − x2

for x ∈ M . Then all hypotheses of Theorems 2.1 and 2.2 are satisfied. Note that x = 1/
√

2 is a
coincidence point of f and T . Note also that Theorems 2.1 and 2.2 of Latif and Tweddle [11]
cannot be used here since f and T are not commuting.

The following extends Theorem 2.3 of Latif and Tweddle [11], Corollary 3.2 of Jungck [7],
and Theorem 1 of Dotson [4].

Theorem 2.4. Let M be a nonempty complete and q-starshaped subset of a normed space X, and
f :M → M a map such that f (M) = M . Assume that T :M → CD(M) is an f -nonexpansive
map. If f and T satisfy condition (A0) and T (M) is bounded, then C(f,T ) �= ∅.

Proof. As in the proof of Theorem 2.1, f xn − yn → 0 as n → ∞ where yn ∈ T xn. Since
dist(f xn,T xn) → 0 as n → ∞, by condition (A0) there exists an x0 ∈ M such that f x0 ∈
T x0. �
Corollary 2.5. Let M be a nonempty compact and q-starshaped subset of a normed space X,
and f :M → M a continuous map such that f (M) = M . Assume that T :M → CD(M) is an
f -nonexpansive map. Then C(f,T ) �= ∅.

Theorem 2.6. Let M be a nonempty complete and q-starshaped subset of a normed space X and
f :M → M a map such that f (M) = M . Assume that T :M → CD(M) is an f -nonexpansive
map, T (M) is bounded, and (f − T )(M) is closed. If, in addition, f is T -weakly commuting
at v and ff v = f v for v ∈ C(f,T ), then F(f ) ∩ F(T ) �= ∅.

Proof. By Theorem 2.1, C(f,T ) �= ∅. Suppose v ∈ C(f,T ). Then f v = ff v ∈ Tf v. Hence
F(f ) ∩ F(T ) �= ∅. �

The following result extends Theorem 6 of Jungck and Sessa [6].
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Theorem 2.7. Let M be a nonempty weakly compact and q-starshaped subset of a Banach space
X and f :M → M be a map such that f (M) = M . Assume that T :M → CD(M) is an f -non-
expansive map and that one of the following two conditions is satisfied:

(a) (f − T ) is demiclosed at 0;
(b) f is weakly continuous, T is compact-valued and X satisfies Opial’s condition.

If f is T -weakly commuting and ff v = f v for v ∈ C(f,T ), then F(f ) ∩ F(T ) �= ∅.

Proof. By Theorem 2.2, in both cases, C(f,T ) �= ∅. As in the proof of Theorem 2.6, F(f ) ∩
F(T ) �= ∅. �
Theorem 2.8. Let M be a nonempty complete and q-starshaped subset of a normed space X, and
f :M → M a map such that f (M) = M . Assume that T :M → CD(M) is an f -nonexpansive
map, f and T satisfy condition (A0), and T (M) is bounded. If f is T -weakly commuting and
ff v = f v for v ∈ C(f,T ), then F(f ) ∩ F(T ) �= ∅.

Proof. By Theorem 2.4, C(f,T ) �= ∅. As in the proof of Theorem 2.6, F(f ) ∩ F(T ) �= ∅. �
Next we derive some invariant approximation results.

Theorem 2.9. Let M be a subset of a normed space X, u ∈ X, f :X → X and T :X → CD(X).
Assume that PM(u) is nonempty q-starshaped and complete, f (PM(u)) = PM(u), T is f -
nonexpansive on PM(u), PM(u) is T -invariant, and that one of the following two conditions
is satisfied:

(a) (f − T )(PM(u)) is closed;
(b) f and T satisfy condition (A0).

Then PM(u) ∩ C(f,T ) �= ∅. If, in addition, f is T -weakly commuting and ff v = f v for v ∈
C(f,T ), then PM(u) ∩ F(f ) ∩ F(T ) �= ∅.

Proof. Since T (PM(u)) ⊂ PM(u), it follows that T :PM(u) → CD(PM(u)). If (a) holds, then
the result follows from Theorem 2.6. If (b) holds, the results follows from Theorem 2.8. �

The following corollary extends and improves Theorem 3.14 of Kamran [8]. We further note
that Kamran’s result remains true if the following assumption is dropped:

f and Aλ satisfy the property (E.A) for each λ ∈ [0,1] where Aλ(x) = (1 − λ)q + λT x.

Corollary 2.10. Let M be a subset of a normed space X, u ∈ X, f :X → X and T :X → CD(X).
Assume that PM(u) is nonempty q-starshaped and compact, f (PM(u)) = PM(u), T is f -non-
expansive on PM(u), PM(u) is T -invariant, and f is continuous on PM(u). Then PM(u) ∩
C(f,T ) �= ∅. If, in addition, f is T -weakly commuting and ff v = f v for v ∈ C(f,T ), then
PM(u) ∩ F(f ) ∩ F(T ) �= ∅.
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Theorem 2.11. Let M be a subset of a Banach space X, u ∈ X, f :X → X and T :X → CD(X).
Assume that PM(u) is nonempty q-starshaped and weakly compact, f (PM(u)) = PM(u), T is
f -nonexpansive on PM(u), PM(u) is T -invariant, and that one of the following two conditions
is satisfied:

(a) (f − T ) is demiclosed at 0;
(b) f is weakly continuous, T is compact-valued and X satisfies Opial’s condition.

Then PM(u) ∩ C(f,T ) �= ∅. If, in addition, f is T -weakly commuting and ff v = f v for v ∈
C(f,T ), then PM(u) ∩ F(f ) ∩ F(T ) �= ∅.

Proof. Since T (PM(u)) ⊂ PM(u), it follows that T :PM(u) → CD(PM(u)). The result now
follows from Theorem 2.7. �
Theorem 2.12. Let M be subset of a normed space X, f :X → X and T :X → CD(X) such
that f u ∈ T u = {u} for some u ∈ X and T (∂M ∩ M) ⊂ M . Assume that PM(u) is nonempty
q-starshaped and complete, f (PM(u)) = PM(u), T is f -nonexpansive on PM(u) ∪ {u} and that
one of the following conditions holds:

(a) (f − T )(PM(u)) is closed;
(b) f and T satisfy condition (A0).

Then PM(u) ∩ C(f,T ) �= ∅. If, in addition, f is T -weakly commuting and ff v = f v for v ∈
C(f,T ), then PM(u) ∩ F(f ) ∩ F(T ) �= ∅.

Proof. Let x ∈ PM(u). Then f x ∈ PM(u) since f (PM(u)) = PM(u). It follows from the defi-
nition of PM(u) that x ∈ ∂M ∩ M and since T (∂M ∩ M) ⊂ M , we have T x ⊂ M . Let z ∈ T x.
Then

d(z,u) � H(T x,T u) � d(f x,f u) = d(f x,u) = dist(u,M).

Now z ∈ M and f x ∈ PM(u) imply that z ∈ PM(u). Thus T x ⊂ PM(u). The result now follows
from Theorem 2.9. �

The following contains, as a special case, Theorem 3 of Latif and Bano [10] and Theorem 7
of Jungck and Sessa [6].

Theorem 2.13. Let M be subset of a normed space X, f :X → X and T :X → CD(X) such
that f u ∈ T u = {u} for some u ∈ X and T (∂M ∩ M) ⊂ M . Assume that PM(u) is nonempty
q-starshaped and weakly compact, f (PM(u)) = PM(u), T is f -nonexpansive on PM(u) ∪ {u}
and that one of the following two conditions is satisfied:

(a) (f − T ) is demiclosed at 0;
(b) f is weakly continuous, T is compact-valued and X satisfies Opial’s condition.

Then PM(u) ∩ C(f,T ) �= ∅. If, in addition, f is T -weakly commuting and ff v = f v for v ∈
C(f,T ), then PM(u) ∩ F(f ) ∩ F(T ) �= ∅.

Proof. As in the proof of Theorem 2.12, PM(u) is T -invariant. The result now follows from
Theorem 2.11. �
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3. Random coincidence point results

The following result extends and improves Theorem 3.2 in [15].

Theorem 3.1. Let M be a nonempty separable weakly compact q-starshaped subset of a Ba-
nach space X, and f :Ω × M → M a continuous and weakly continuous random operator with
f (ω,M) = M for each ω ∈ Ω . Assume that T :Ω ×M → CB(M) is an f -nonexpansive random
operator. Suppose that one of the following two conditions is satisfied:

(a) (f − T )(ω, .) is demiclosed at 0 for each ω ∈ Ω ;
(b) T (ω, .) is compact-valued for each ω ∈ Ω , and X satisfies Opial’s condition.

Then f and T have a random coincidence point.

Proof. By Theorem 2.2, in both of the cases, f and T have a deterministic coincidence point.
The result now follows from Theorem 1.3. �
Corollary 3.2. Let M be a nonempty separable weakly compact q-starshaped subset of a Banach
space X, and T :Ω × M → CB(M) a nonexpansive random operator. Suppose that one of the
following two conditions is satisfied:

(a) (I − T )(ω, .) is demiclosed at 0 for each ω ∈ Ω ;
(b) T (ω, .) is compact-valued for each ω ∈ Ω and X satisfies Opial’s condition.

Then T has a random fixed point.

Remark 3.3. Theorem 3.1 generalizes Theorem 3.4 of Tan and Yaun [17] and Theorem 1 of
Xu [18].

The following result generalizes and improves Theorem 3.18 of Shahzad [13].

Theorem 3.4. Let M be a nonempty separable closed and q-starshaped subset of a Banach
space X, and f :Ω × M → M a continuous random operator such that f (ω,M) = M for each
ω ∈ Ω . Assume that T :Ω × M → CD(M) is an f -nonexpansive random operator, f and T

satisfy condition (A0) and T (ω,M) is bounded for each ω ∈ Ω . Then f and T have a random
coincidence point.

Proof. By Theorem 2.4, f and T have a deterministic coincidence point. Hence, Theorem 1.4
further implies that f and T have a random coincidence point. �

The following extends and improves Theorem 3.17 [13].

Corollary 3.5. Let M be a nonempty compact and q-starshaped subset of a normed space X,
and f :Ω × M → M a continuous random operator such that f (ω,M) = M for each ω ∈ Ω .
Assume that T :Ω × M → CD(M) is an f -nonexpansive random operator. Then f and T have
a random coincidence point.

If f = I , the identity map, then we get the following extensions of Corollary 3.19 [13].
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Corollary 3.6. Let M be a nonempty separable closed and q-starshaped subset of a Banach
space X, and T :Ω × M → CD(M) a nonexpansive random operator such that T (ω,M) is
bounded for each ω ∈ Ω . If T satisfies condition (A). Then T has a random fixed point.

Theorem 3.7. Suppose that X, M , f , T and q satisfy the assumptions of Theorem 3.1 (or Theo-
rem 3.4). Moreover, if f is T -weakly commuting random operator and for any v ∈ M and ω ∈ Ω ,
f (ω,f (ω, v)) = f (ω,v) whenever f (ω,v) ∈ T (ω,v), then f and T have a common random
fixed point.

Proof. By Theorem 3.1 (or Theorem 3.4), f and T have a random coincidence point
ψ :Ω → M , i.e., f (ω,ψ(ω)) ∈ T (ω,ψ(ω)) for each ω ∈ Ω . Let ξ(ω) = f (ω,ψ(ω)) for ω ∈ Ω .
Then ξ :Ω → M is measurable. Now fix ω ∈ Ω . Since f is T -weakly commuting, we have
ξ(ω) = f (ω,ψ(ω)) = f (ω, ξ(ω)) = f (ω,f (ω,ψ(ω))) ∈ T (ω,f (ω,ψ(ω))) = T (ω, ξ(ω)).
Hence ξ is a common random fixed point of f and T . �

The following extends and complements the results of Beg and Shahzad [1–3].

Theorem 3.8. Let M be subset of a Banach space X and let f :Ω × X → X and T :Ω × X →
CB(X) be random operators such that for each ω ∈ Ω , u = f (ω,u) and T (ω,u) = {u} for some
u ∈ X and T (ω, ∂M ∩ M) ⊂ M . Suppose that PM(u) is nonempty q-starshaped and that for
each ω ∈ Ω , T (ω, .) is f (ω, .)-nonexpansive on PM(u) ∪ {u}, f (ω, .) is continuous on PM(u)

and f (ω,PM(u)) = PM(u). Assume that one of the following conditions is satisfied:

(a) PM(u) is separable weakly compact, f is weakly continuous and (f −T )(ω, .) is demiclosed
at 0 for each ω ∈ Ω ;

(b) T (ω, .) is compact-valued on PM(u) for each ω ∈ Ω , PM(u) is separable weakly compact,
f is weakly continuous and X satisfies Opial’s condition;

(c) PM(u) is separable closed, and f and T satisfy condition (A0);
(d) PM(u) is compact.

Then f and T have a random coincidence point ψ :Ω → PM(u). If, in addition, f is T -
weakly commuting and for any v ∈ M and ω ∈ Ω , f (ω,f (ω, v)) = f (ω,v) whenever f (ω,v) ∈
T (ω,v), then there exists common random fixed point ξ :Ω → PM(u) of f and T .

Proof. Fix ω ∈ Ω . As in the proof of Theorem 2.12, PM(u) is T (ω, .)-invariant. We there-
fore obtain, in each case, that f and T have a random coincidence point ψ : Ω → PM(u), i.e.,
f (ω,ψ(ω)) ∈ T (ω,ψ(ω)) for each ω ∈ Ω (for (a) and (b), we apply Theorem 3.1, and for
(c) and (d), we use Theorem 3.4). Let ξ(ω) = f (ω,ψ(ω)) for ω ∈ Ω . Then ξ :Ω → PM(u)

is measurable. Since f is T -weakly commuting, we have ξ(ω) = f (ω,ψ(ω)) = f (ω, ξ(ω)) =
f (ω,f (ω,ψ(ω))) ∈ T (ω,f (ω,ψ(ω))) = T (ω, ξ(ω)) for each ω ∈ Ω . Hence ξ is a common
random fixed point of f and T . �
4. Further remarks

(1) All results of the paper (Theorems 2.1–3.8) remain valid if starshapedness of the set M is
replaced by the following assumption considered for a single-valued case in [12]:
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There exists q ∈ M and a fixed sequence {kn} with 0 < kn < 1 converging to 1 such that
(1 − kn)q + knT x ⊆ M for each x ∈ M .

We do not consider this case here, as it is a routine exercise.
Moreover, all results of the paper, except those for Banach spaces satisfying Opial’s condition,

hold if f -nonexpansiveness of T is replaced by the generalized f -nonexpansive condition:

H(T x,T y) � max

{
‖f x − fy‖,dist

(
f x, [q,T x]),dist

(
fy, [q,T y]),

dist(f x, [q,T y]) + dist(fy, [q,T x])
2

}

for all x, y ∈ M .
(2) Let M be a subset of a normed space X and S,T :M → CD(M) and f,g :M → M . Then

S and T are called nonexpansive relative to f and g if

H(Sx,T y) � ‖f x − gy‖
for all x ∈ M . If both S and T are single-valued, the above definition reduces to that of Jungck [7].
Following the arguments as above, and as in Jungck [7], where single-valued case was consid-
ered, it is possible to obtain coincidence and invariant approximation results for families of four
maps S, T , f and g satisfying the above inequality. We leave the obvious detail to the reader.
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